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STAT 379 Review Info Spring 2008

Things you might expect to see on the final exam:

-
short answer questions as on the midterm

-
questions about SPSS output to interpret as on the midterm

-
descriptions of research that you should describe appropriate analyses for

-
objective multiple choice / true false questions

Things to study from:

-
Spring 2007 final exam and Cillessen's and Katz's final exams

-
Keith Ch. 5-9

-
Tamar's PowerPoint slides on mediation and moderation

-
my Notes on Interpreting Regression Interactions

-
my Notes on Mediation and SPSS

-
my Logistic Regression notes, as well as notes on HW8

-
my Table summarizing General Linear Model techniques

-
Canonical Correlation chapter on web page: use as intro to multivariate approach and understand basic idea of canonical correlation(s) as described in class, not all the detail of the chapter

-
Factor Analysis: David Garson's web page, linked from the class web page; notes on HW9

-
MANOVA / Discriminant Analysis: notes on HW10

-
Grimm and Yarnold: most of the MANOVA chapter that matters is before p. 267; most of the DA chapter that matters is before p. 287.

Also note:

-
Midterm Review Info for some topics (e.g. sequential regression, cross-validation, adjusted R-square)

-
Relevant questions from Cillessen's and Katz's midterms on regression topics that weren't on our midterm

REGRESSION

Sequential regression

-
related to semipartial correlation as simultaneous regression is to partial correlation

-
earlier steps (earlier entered variables) take all variance available, successive steps take all that's left, final step gets only what's unaccounted for by all other predictors

-
final step is equivalent to simultaneous regression result; simultaneous regression treats all predictors as if entered last: unique contribution only, over and above any other predictors

-
when to use: control variable, theoretical precedence, test of sets of variables at once, interactions and curves as second step after main effect entered

-
incremental R-square and F-test

Stepwise regression

-
know what it is and why it's not recommended

-
don't worry about different kinds or specific procedures.

Sample-dependent results capitalize on chance and error

-
cross-validation to check extent of R-square shrinkage when applying equation to new sample (cross-validation R-square can also be estimated from formula)

-
adjusted R-square formula estimates population value of R-square (not cross-validation R-square) since increasing number of predictors always artificially increases R-square (till R-square = 1.0 when k=N-1)

Categorical predictors

-
g groups become g-1 dummy variables (or vectors)

-
dummy coding - each 0/1 dummy variable contains answers to yes/no question about group membership, e.g., is this person in grp 1?; reference group is coded all 0's (i.e., answered no to each variable's question)

-
interpret overall categorical variable's significance as significance of all dummy variables taken together

-
interpret a as mean of the reference group coded as all zeros

-
interpret b-weight for each dummy variable as the difference between the mean of the group coded as "1" in that dummy variable and the reference group's mean

-
interpret t-test of that dummy variable's b-weight as significance of that variable's mean vs. the reference group's mean; use Bonferroni correction as appropriate to control Type I error over multiple comparisons (or Dunnett when experimental groups are each compared only to a control group, which can be the reference group)

-
comparisons involving other than the reference group are done by subtracting b-weights appropriately; for t-test (= mean diff / std err) with equal N all comparisons' standard errors are equal so only mean difference needs to be computed by hand; even more easily done by recoding to make another group the reference group

-
effect coding: reference group is coded all -1's instead of 0's, a is grand mean, b-weights are deviations from grand mean for group coded 1 in that vector; t-tests test that deviation's significance (not a useful test)

-
orthogonal coding uses codes that makes independent comparisons, e.g., gp 1 vs gp2 [1, -1, 0], then mean of gp 1 & 2 vs gp 3 [1, 1, -2] and t-tests give significance of these comparisons with no Type I error correction required because orthogonal; useful sometimes

-
unequal N parameter estimates: interpretation is same as with equal N for dummy and orthogonal coding; effect coding intercept is now unweighted mean of the means instead of the grand mean and b is deviation from that unweighted mean

-
unequal N t-tests: standard error is no longer the same for all comparisons but usual t-test formula for comparing group means handles this fine; or recode using new reference group

Interactions: center all continuous variables by subtracting the mean from every score; enter main effects in first step; make product terms by multiplying any interacting variables together, including every dummy variable if interaction is with a categorical variable; enter product terms in second step

-
interaction between categorical and continuous: interpret significant interaction as requiring regression lines with different slopes for each group

-
ANCOVA Analysis of Covariance looks at group differences controlling for continuous variable: test incremental effect of categorical variable over and above continuous variable, if no interaction present

-
interactions between continuous and continuous

-
interaction between continuous and itself: variable squared, or quadratic term

Moderation = interaction: WHEN or under what circumstances an effect occurs

-
ex.: interaction of continuous with categorical: different categorical conditions moderate effect of main IV on DV so slopes are different for different groups

-
ex.: interaction of continuous with continuous: maybe high scores on moderator mean steep slope of main IV on DV while low scores on moderator mean flat slope of main IV on DV

Mediation = HOW or through what mechanism does an effect occur

-
IV acts through Mediator to affect DV; demonstrated using simultaneous regressions; represented in path diagram with a, b, c, and c' as beta-weights

-
show that IV predicts DV; show that IV predicts Mediator; show that Mediator predicts DV with IV included in simultaneous regression

-
full mediation: IV's b-weight goes to 0 when Mediator is in equation; realistically, partial mediation: IV's b-weight is (significantly) lower with Mediator in equation than without

-
Sobel test compares IV's effect on DV when it's the only predictor, vs. IV's smaller effect on DV when Mediator is included in simultaneous regression; this difference is equivalent to testing significance of the indirect path a*b from IV to DV: IV->Mediator->DV

-
bootstrapping "resampling" procedure allows empirical estimates of parameters with unknown population distributions based on generating more samples from a single original sample; can be used to get estimates and confidence intervals for indirect mediated path a*b from IV to DV

Regression assumptions:

-
independence - no observations are influenced by or correlated with any other observations; based on good sampling procedures and research design

-
linearity - IVs must have linear relationship to DV

-
normality - DV is normally distributed (specifically the residuals are normally distributed around the regression line)

-
homoscedasticity / homogeneity of variance - same spread of points around regression line at every value of Y'

-
correct specification of model (all relevant predictors and no irrelevant predictors included, direction of causality correct) - not a statistical assumption but obviously necessary for estimating b-weights since every b-weight depends on all the other predictors in the model; probably impossible to meet this, or even to know if you've met it

Plot residuals (on vertical) vs predicted Y' (on horizontal):

-
horizontal line at residual = 0 is the regression line

-
residuals should be in roughly rectangular shape around zero line (regression line)

-
if spread around line varies, no homoscedasticity

-
if spread is lopsided above or below line, no normality

-
if residuals are, e.g., above then below then above line, curve is nonlinear, possibly quadratic

Other diagnostics:

-
multicollinearity - one IV largely predictable from others will make regression coefficients unstable, unreliable, subject to large changes from small changes in data, ungeneralizable; worst case - regression won't work; IV's tolerance is its (1-Rsquare) when predicted from all other IVs; VIF Variance Inflation Factor is reciprocal = 1/tolerance

-
outliers - residuals farther than 3 SD from the mean are worth investigating

LOGISTIC REGRESSION: see separate document, Notes On Logistic Regression

MULTIVARIATE ANALYSES (Canonical Correlation, Factor Analysis, MANOVA, Discriminant Analysis)

linear combination (variate) of observed variables is formed, according to some criterion appropriate for the analysis

-
Canonical Correlation forms composites that will maximize the correlation between the composites

-
Factor Analysis forms composites that will maximize the amount of shared variance explained, that is, the composites (called factors) will explain as much as possible of the variance the variables have in common (their communalities) but will not attempt to explain the unique unshared portion of each variable's variance

-
(Principal Components Analysis explains ALL the variance among the variables, which has its uses, but it's therefore only a first step in Factor Analysis and must be whittled into shape to focus on only the shared common variance)

-
MANOVA forms composites of all the DVs such that the groups will differ as much as possible on their mean composite variable scores; but all these possible composite variables are hidden and lumped together in the Wilks' Lambda and significance test

-
Discriminant Analysis makes MANOVA's different composite scores explicit by reversing the labels: MANOVA's group IVs become DVs in Discriminant Analysis, and its continuous DVs become the Discriminant Analysis IVs used to predict group membership; several different composite variables (called discriminant functions) are identified, each of which can be interpreted as a way the groups differ (see "structure coefficients" below)

multivariate = more than one linear combination (variate) of observed variables is formed

-
the multivariate situation generally arises with more than one dependent variable, i.e., when there is more than one variable on both sides of the equal sign

-
regression and its equivalent ANOVA form only one variate (i.e., the regression equation), so are univariate: regression's variate is the combination of X's designed to maximize the correlation with the dependent variable Y -- ie, the regression equation

-
multiple combinations are possible because each composite variable leaves behind residual variance in the observed / measured variables, that can then be further explained by another different combination of those same observed variables

-
the number of combinations possible before exhausting the explainable residuals is the smaller number of vectors on either the left or the right side of the equal sign

-
for Multiple Regression, there's only one DV, so only one set of coefficients is produced - the b-weights of the regression equation

-
for Factor Analysis, the observed variables can be thought of as DVs in search of hypothetical IVs (factors), but since the total number of synthetic IVs or factors it's possible to produce is the same as the number of variables, the limit on the number of composites is the same on either side

-
for MANOVA and its flip side Discriminant Analysis, first determine the number of vectors needed to represent the IV groups (= no. groups - 1); then it's whichever is smaller, that number of IV vectors or the number of DV vectors on the other side of the equal sign

linear combinations / composites / variates will be determined using matrix algebra and will include these terms in their results (in MANOVA only implicitly, but explicitly in DA and Factor Analysis):

-
eigenvectors: each eigenvector is a set of coefficients for transforming a set of observed / measured variables into a new composite variable - just like the coefficients in a regression equation transform the observed X's into predicted Y' scores; there is one eigenvector for each possible way of combining the variables into composites, since each composite requires a different set of coefficients

-
eigenvalues: the eigenvalue of a composite variable tells you how much of the variance across all the observed variables is accounted for by the linear combination used; these are most prominent in Factor Analysis where they represent the amount of total variance accounted for by each factor, and thus indicate the importance or usefulness of the factor

-
the structure coefficients, presented in a structure matrix, are simply the correlations of the composite variables with the observed / measured variables, and are the way both factors and discriminant functions are interpreted

-
in Factor Analysis the structure coefficients are called "loadings" and interpretation is based on deciding which variables "load" on which factors (rule of thumb: loading < .3 = no, loading > .4 = yes, but count the variable more in your interpretaion if it doesn't load on other factors as well)

-
in Discriminant Analysis structure coefficients are used likewise and sometimes called "loadings," with each function interpreted as reflecting those variables that correlate most highly with it; but the function coefficients or eigenvectors are also used in a similar manner

Multivariate assumptions are the same as for univariate, with some modifications

-
independence: same

-
multivariate normality: since a composite is constructed from the observed variables, not only does every observed / measured variables have to be normally distributed, but any possible linear combination you might come up with must also be; in practice, people just check for univariate normality, and sometimes check bivariate scatterplots for the expected football shape, and then hope for the best

-
homogeneity of variance-covariance matrices: variance of DV1 needn't be the same as for DV2 or DV3 etc., and covariance of DV1 and DV2 needn't be the same as between 1 and 3 or 2 and 3; but whatever these six numbers are (or more, depending on the number of variables), they must be the same across groups

Factor Analysis

-
do Factor Analysis to discover underlying factors responsible for the pattern of correlations among observed variables; no significance testing is relevant so no assumptions are very important, but need at least 5 subjects per variable, with total of at least 200 (recommendations from different sources range from 100-300) to make estimates stable

-
factors are computed by combining observed variables into linear combinations using an eigenvector (derived using matrix algebra) as the set of coefficients for each factor

-
but conceptually the factors thus uncovered are actually thought of as underlying causes, variables that are unmeasured but which really are there and which are being approximated by the calculated composites

-
so conceptually it's as if the observed measures are actually linear combinations of the factors instead of vice versa -- as if the underlying factors are the IVs and the observed variables are the DVs

-
since the factors are uncorrelated, they are like uncorrelated IVs in a regression equation: the correlations between the IVs and the DV would be equal to the beta weights, and R-square is the sum of the squared correlations since the predictors are uncorrelated

-
since all the variables are standardized in Factor Analysis, the correlations or "loadings" between the factors and each DV (the observed variables) are just like beta weights, and the squares of the loadings for a factor across all the variables add up to a sort of R-square -- only, this "sort of R-square" is not the amount of variance accounted for in a single variable, but the amount of variance in the whole set of variables

-
this total variance in the whole set of variables accounted for by a factor is its eigenvalue, and the proportion of total variance accounted for by a factor is the amount of variance it accounts for (its eigenvalue) divided by the total variance there is; and the total there is is just the number of variables (since each is standardized and has a variance of 1.0 so 6 variables must have a total variance of 6*1.0 = 6.0)

-
the number of factors is determined by various possible rules: 1) use factors with eigenvalues larger than 1, since any factor with an eigenvalue less than 1 is not even accounting for as much variance as a single variable (whose variance IS 1); 2) examine the scree plot of successive eigenvalues for the factors in order, and use the factors whose eigenvalues form the initial slope but not the subsequent flat portion or "scree"; 3) decide a priori to use enough factors to account for some given total proportion of variance; 4) interpret and use factors based on theoretical considerations

-
once the number of factors is decided on, they can be interpreted as new axes for the data points to be plotted on

-
putting these axes in any other orientation will account for the same amount of variance; "rotation" to other orientations may improve interpretability by making more of the loadings either big or small and thus less ambiguous (found in SPSS "rotated component matrix")

-
the new loadings are different, and eigenvalues are different, but sum of eigenvalues (total variance accounted for) is the same

-
if rotation does not keep factors uncorrelated ("orthogonal"), ie, keep new axes perpendicular, it's instead called an "oblique" rotation in which axes are not at right angles and factors are correlated with each other

-
then SPSS presents the "component matrix" of loadings in two ways, as partial correlations where loadings are the correlations of the variables with only the unique part of each factor (as if the factors were given partial beta weights like in regression with correlated predictors), and as plain old non-partialled correlations between the variables and the correlated factors

-
the partialled version is known as the "pattern matrix" of "pattern coefficients" and the non-partialled version is the "structure matrix" of "structure coefficients" as described above; when rotations are orthogonal, there is no difference between the pattern and the structure matrix

MANOVA / Discriminant Analysis

do MANOVA to guard against Type I error in subsequent series of univariate analyses on lots of DVs (a doubtful though popular rationale); or to discover multivariate differences that only appear in conjunctions of variables whereas on single DVs groups may have overlapping distributions that don't yield significant differences (important in principle but rarely comes up in real life); or to analyze a repeated measures design when the repeated measures ANOVA assumption of sphericity is violated

must have more subjects than DVs, in every cell; better off having a reasonable ANOVA-ish number like at least 10-20 per cell

MANOVA null hypothesis: equality of DV vectors for groups, or equivalently, no differences between groups on any composite DV measure

Wilks' Lambda: the proportion of variance UNaccounted for by the groups (the usual effect size measure eta-square is the proportion of variance that IS accounted for by the groups); other multivariate tests can be ignored until you have a specific reason to use them

Wilks' Lambda gets transformed to an F ratio and the significance of F is evaluated in MANOVA; in Discriminant Analysis Wilks' Lambda gets converted to a chi-square for significance testing

Wilks' Lambda in MANOVA: tests all possible composites at once and gives p-value for ANY differences that exist

Wilks' Lambda in Discriminant Analysis: tests all composites (discriminant functions) at once -- equivalent to MANOVA's significance test; then tests all composites except the most important one to see if the remaining ones contribute on their own; then does that again without top two most important ones; and so on till it tests only the last composite

Questions about how much of the book chapters you need to know when they go beyond what was covered in lecture:

What do we have to know about Canonical Correlation?

Just that canonical correlation is the generic version of a multivariate analysis: the Y variables are combined and the X variables are combined, both according to the criterion that the resulting composite Y and X should have the largest possible correlation between them. That correlation is the canonical correlation Rc, and its square R2c tells us what proportion of their variance the two composites share. The un-shared or residual variance in each is then attacked in the same way, to make a second pair of composite variables which are again maximally correlated with each other (though completely UNcorrelated with either of the first step's composites!). This process is carried out for a number of times corresponding to the smaller number of variables on one side of the equal sign, whether that's the Y's or the X's. After that, the residual variance on each side will no longer be explainable by any possible linear composite on the other side.

What do we have to know about Discriminant Analysis?

We did talk about Discriminant Analysis but only as the flip side to MANOVA. MANOVA implicitly uses the linear composite of the DVs that the groups would show the biggest differences on, to test for significant group differences. DA explicitly identifies those composites that would separate the groups. The beginning parts of the chapter on descriptive DA are relevant for our class. The parts about using it for classification (predictive DA) aren't. Aside from saying what those composites are and how they're formed, the descriptive part of the chapter talks about assumptions (same as MANOVA), significance (also using Wilks' Lambda) and interpretation (correlation of each variable with the composite or discriminant function score - same as with factor analysis). All we're going for is the general overview of what DA is and what to make of it when you see it.

What about follow-up tests for MANOVA?

I only focused on two standard followup procedures to MANOVA so those will be on the exam: 1) univariate ANOVAs to find which DVs produce significant differences, on the (questionable) assumption that the significant MANOVA controls the Type I error rate across the subsequent univariate ANOVAs on separate DVs; and 2) discriminant analysis to identify the relative contribution of each variable to the differences and to try to interpret why the differences exist (as above). Stepdown analysis is described in the chapter but it's rarely appropriate, so skip that for this exam. I also didn't bother with multivariate contrasts, analogous to post hoc tests in ANOVA, because even though they're simple enough, people don't do them very much - they usually go from MANOVA to univariate comparisons, and if there are post hoc group comparisons to be made, they do them at the univariate level with Tukey or something like that.

Do we need to know MANCOVA?

Not MANCOVA per se. MANCOVA is exactly analogous to ANCOVA, in the same way that MANOVA is like ANOVA - they're the same only with multiple DVs in the multivariate version. I won't ask about MANCOVA, but you should remember that ANCOVA (Analysis of Covariance) is testing for group differences like an ANOVA, only controlling for scores on some continuous variable. It's just done as a regression in which a categorical variable is entered along with a continuous control variable (or covariate) that it doesn't interact with. (Equivalently the categorical is the second step after the continuous one in a sequential regression, but of course in simultaneous regression it's as if every variable were entered last.) Then you're looking at the effect of the categorical variable over and above the effect of the continuous.

What do we need to know about repeated measures MANOVA?

My description in class of repeated measures MANOVA is much simpler than the one in the chapter, and you should go by my version for this exam. In my version, the multiple observations of the same DV - at different times, for instance - just become multiple DVs in a MANOVA: DV-at-time-1, DV-at-time-2, etc., and the between factors form the groups. (The chapter discusses using difference-scores which is an approach called Profile Analysis; though we didn't discuss it, it is useful in some circumstances.) In my version, you DON'T need to assume sphericity as in repeated measures ANOVA, so it's easier, but you also don't get to see the within factor interact with the between; and the MANOVA is less powerful than the repeated measures ANOVA would be if its assumptions were met. Recognizing that a repeated factor can be conceptualized as multiple separate DVs is really all I'm looking for for repeated measures MANOVA.

Do we need to know about power analysis for MANOVA?

No. I won't ask about MANOVA power analysis or any other kind of power analysis, though that's probably an unfortunate omission. At any rate, the chapter says next to nothing about it!

Do we need to know about "iterative logistic regression"?

No. Iterative logistic regression just refers to applying the logic of stepwise regression procedures to choose the variables in a logistic regression model. I don't like it in linear regression and I don't like it in logistic regression either. Skip it. (You should, however, know what stepwise regression refers to, but not all its particular varieties of forward, backward, etc, or how to do those.) Note that the term "iterative logistic regression" does not refer to the fact that the maximum likelihood estimation procedure uses iteration to arrive at the logisitic regression coefficients. But you don't really have to be concerned with that either.

What do we need to know about logistic regression with multiple predictors?

I don't make a distinction between single-predictor linear regression and multiple regression, and the same goes for single vs. multiple predictors in logistic regression. The translation of a b-weight into an exponentiated b-weight, or Exp(B), gives the same meaning for an odds ratio regardless of the number of predictors involved.

